
kas Documentation
Release 0.20.1

Daniel Wagner, Jan Kiszka, Claudius Heine

Mar 22, 2019

Contents

1 Introduction and installation 3

2 User Guide 5
2.1 Dependencies & installation . 5
2.2 Usage . 5
2.3 Use Cases . 6
2.4 Project Configuration . 7

3 Developer Guide 13
3.1 Deploy for development . 13
3.2 Docker image build . 13
3.3 Community Resources . 13
3.4 Class reference documentation . 14

4 Configuration Format Changes 17
4.1 Version 1 (Alias ‘0.10’) . 17
4.2 Version 2 . 17
4.3 Version 3 . 17
4.4 Version 4 . 18
4.5 Version 5 . 18
4.6 Version 6 . 18
4.7 Version 7 . 18
4.8 Version 8 . 18

5 Indices and tables 19

Python Module Index 21

i

ii

kas Documentation, Release 0.20.1

Contents:

Contents 1

kas Documentation, Release 0.20.1

2 Contents

CHAPTER 1

Introduction and installation

This tool provides an easy mechanism to setup bitbake based projects.

The OpenEmbedded tooling support starts at step 2 with bitbake. The downloading of sources and then configuration
has to be done by hand. Usually, this is explained in a README. Instead kas is using a project configuration file and
does the download and configuration phase.

Currently supported Yocto versions:

• 2.1 (Krogoth)

• 2.2 (Morty)

Older or newer versions may work as well but haven’t been tested intensively.

Key features provided by the build tool:

• clone and checkout bitbake layers

• create default bitbake settings (machine, arch, . . .)

• launch minimal build environment, reducing risk of host contamination

• initiate bitbake build process

3

kas Documentation, Release 0.20.1

4 Chapter 1. Introduction and installation

CHAPTER 2

User Guide

2.1 Dependencies & installation

This project depends on

• Python 3

• distro Python 3 package

• jsonschema Python 3 package

• PyYAML Python 3 package (optional, for yaml file support)

If you need Python 2 support consider sending patches. The most obvious place to start is to use the trollius package
instead of the asyncio.

To install kas into your python site-package repository, run:

$ sudo pip3 install .

2.2 Usage

There are three options for using kas:

• Install it locally via pip to get the kas command.

• Use the docker image. In this case, run the commands in the examples below within docker run -it
kasproject/kas:<version> sh or bind-mount the project into the container. See https://hub.docker.
com/r/kasproject for all available images.

• Use the run-kas wrapper from this directory. In this case, replace kas in the examples below with path/to/
run-kas.

Start build:

5

https://hub.docker.com/r/kasproject
https://hub.docker.com/r/kasproject

kas Documentation, Release 0.20.1

$ kas build /path/to/kas-project.yml

Alternatively, experienced bitbake users can invoke usual bitbake steps manually, e.g.:

$ kas shell /path/to/kas-project.yml -c 'bitbake dosfsutils-native'

kas will place downloads and build artifacts under the current directory when being invoked. You can specify a
different location via the environment variable KAS_WORK_DIR.

2.2.1 Command line usage

2.2.2 Environment variables

Environment
variables

Description

KAS_WORK_DIR The path of the kas work directory, current work directory is the default.
KAS_REPO_REF_DIRThe path to the repository reference directory. Repositories in this directory are used as refer-

ences when cloning. In order for kas to find those repositories, they have to be named in a spe-
cific way. The repo URLs are translated like this: “https://github.com/siemens/meta-iot2000.
git” resolves to the name “github.com.siemens.meta-iot2000.git”.

KAS_DISTRO
KAS_MACHINE
KAS_TARGET
KAS_TASK

This overwrites the respective setting in the configuration file.

KAS_PREMIRRORSSpecifies alternatives for repo URLs. Just like bitbake PREMIRRORS, this variable consists of
new-line separated entries. Each entry defines a regular expression to match a URL and, space-
separated, its replacement. E.g.: “https://.*.somehost.io/ https://localmirror.net/”

SSH_PRIVATE_KEYPath to the private key file that should be added to an internal ssh-agent. This key cannot
be password protected. This setting is useful for CI build servers. On desktop machines, an
ssh-agent running outside the kas environment is more useful.

SSH_AUTH_SOCKSSH authentication socket. Used for cloning over SSH (alternative to SSH_PRIVATE_KEY).
DL_DIR
SSTATE_DIR
TMPDIR

Environment variables that are transferred to the bitbake environment.

http_proxy
https_proxy
ftp_proxy
no_proxy

This overwrites the proxy configuration in the configuration file.

GIT_PROXY_COMMAND
NO_PROXY

Set proxy for native git fetches. NO_PROXY is evaluated by OpenEmbedded’s oe-git-proxy
script.

SHELL The shell to start when using the shell plugin.
TERM The terminal options used in the shell plugin.

2.3 Use Cases

1. Initial build/setup:

$ mkdir $PROJECT_DIR
$ cd $PROJECT_DIR

(continues on next page)

6 Chapter 2. User Guide

https://github.com/siemens/meta-iot2000.git
https://github.com/siemens/meta-iot2000.git
https://.*.somehost.io/
https://localmirror.net/

kas Documentation, Release 0.20.1

(continued from previous page)

$ git clone $PROJECT_URL meta-project
$ kas build meta-project/kas-project.yml

2. Update/rebuild:

$ cd $PROJECT_DIR/meta-project
$ git pull
$ kas build kas-project.yml

2.4 Project Configuration

Currently, JSON and YAML are supported as the base file formats. Since YAML is arguably easier to read, this
documentation focuses on the YAML format.

Every file needs to contain a header, that provides kas with information
about the context of this file.
header:

The `version` entry in the header describes for which configuration
format version this file was created for. It is used by kas to figure
out if it is compatible with this file. The version is an integer that
is increased on every format change.
version: x

The machine as it is written into the `local.conf` of bitbake.
machine: qemu
The distro name as it is written into the `local.conf` of bitbake.
distro: poky
repos:

This entry includes the repository where the config file is located
to the bblayers.conf:
meta-custom:
Here we include a list of layers from the poky repository to the
bblayers.conf:
poky:
url: "https://git.yoctoproject.org/git/poky"
refspec: 89e6c98d92887913cadf06b2adb97f26cde4849b
layers:

meta:
meta-poky:
meta-yocto-bsp:

A minimal input file consists out of the header, machine, distro, and repos.

Additionally, you can add bblayers_conf_header and local_conf_headerwhich are strings that are added
to the head of the respective files (bblayers.conf or local.conf):

bblayers_conf_header:
meta-custom: |
POKY_BBLAYERS_CONF_VERSION = "2"
BBPATH = "${TOPDIR}"
BBFILES ?= ""

local_conf_header:
meta-custom: |
PATCHRESOLVE = "noop"
CONF_VERSION = "1"
IMAGE_FSTYPES = "tar"

2.4. Project Configuration 7

kas Documentation, Release 0.20.1

meta-custom in these examples should be a unique name (in project scope) for this configuration entries. We
assume that your configuration file is part of a meta-custom repository/layer. This way its possible to overwrite or
append entries in files that include this configuration by naming an entry the same (overwriting) or using an unused
name (appending).

2.4.1 Including in-tree configuration files

It’s currently possible to include kas configuration files from the same repository/layer like this:

header:
version: x
includes:
- base.yml
- bsp.yml
- product.yml

The specified files are addressed relative to your current configuration file.

2.4.2 Including configuration files from other repos

It’s also possible to include configuration files from other repos like this:

header:
version: x
includes:
- repo: poky

file: kas-poky.yml
- repo: meta-bsp-collection

file: hw1/kas-hw-bsp1.yml
- repo: meta-custom

file: products/product.yml
repos:

meta-custom:
meta-bsp-collection:
url: "https://www.example.com/git/meta-bsp-collection"
refspec: 3f786850e387550fdab836ed7e6dc881de23001b
layers:

Additional to the layers that are added from this repository
in the hw1/kas-hw-bsp1.yml, we add here an additional bsp
meta layer:
meta-custom-bsp:

poky:
url: "https://git.yoctoproject.org/git/poky"
refspec: 89e6c98d92887913cadf06b2adb97f26cde4849b
layers:

If `kas-poky.yml` adds the `meta-yocto-bsp` layer and we
do not want it in our bblayers for this project, we can
overwrite it by setting:
meta-yocto-bsp: exclude

The files are addressed relative to the git repository path.

The include mechanism collects and merges the content from top to buttom and depth first. That means that settings in
one include file are overwritten by settings in a latter include file and entries from the last include file can be overwritten
by the current file. While merging all the dictionaries are merged recursively while preserving the order in which the
entries are added to the dictionary. This means that local_conf_header entries are added to the local.conf

8 Chapter 2. User Guide

kas Documentation, Release 0.20.1

file in the same order in which they are defined in the different include files. Note that the order of the configuration
file entries is not preserved within one include file, because the parser creates normal unordered dictionaries.

2.4.3 Including configuration files via the command line

When specifying the kas configuration file on the command line, additional configurations can be included ad-hoc:

$ kas build kas-base.yml:debug-image.yml:board.yml

This is equivalent to static inclusion from some kas-combined.yml like this:

header:
version: x
includes:
- kas-base.yml
- debug.image.yml
- board.yml

Command line inclusion allows to create configurations on-demand, without the need to write a kas configuration file
for each possible combination.

Note that all configuration files combined via the command line either have to come from the same repository or have
to live outside of any versioning control. kas will refuse any other combination in order to avoid complications and
configuration flaws that can easily emerge from them.

2.4.4 Configuration reference

• header: dict [required] The header of every kas configuration file. It contains information about the context
of the file.

– version: integer [required] Lets kas check if it is compatible with this file. See the configuration
format changelog for the format history and the latest available version.

– includes: list [optional] A list of configuration files this current file is based on. They are merged in
order they are stated. So a latter one could overwrite settings from previous files. The current file can
overwrite settings from every included file. An item in this list can have one of two types:

* item: string The path to a kas configuration file, relative to the current file.

* item: dict If files from other repositories should be included, choose this representation.

· repo: string [required] The id of the repository where the file is located. The repo needs to be
defined in the repos dictionary as <repo-id>.

· file: string [required] The path to the file relative to the root of the repository.

• machine: string [optional] Contains the value of the MACHINE variable that is written into the local.
conf. Can be overwritten by the KAS_MACHINE environment variable and defaults to qemu.

• distro: string [optional] Contains the value of the DISTRO variable that is written into the local.conf.
Can be overwritten by the KAS_DISTRO environment variable and defaults to poky.

• target: string [optional] or list [optional] Contains the target or a list of targets to build by bitbake. Can be
overwritten by the KAS_TARGET environment variable and defaults to core-image-minimal. Space
is used as a delimiter if multiple targets should be specified via the environment variable.

• env: dict [optional] Contains environment variable names with the default values. These variables are made
available to bitbake via BB_ENV_EXTRAWHITE and can be overwritten by the variables of the environ-
ment in which kas is started.

2.4. Project Configuration 9

kas Documentation, Release 0.20.1

• task: string [optional] Contains the task to build by bitbake. Can be overwritten by the KAS_TASK environ-
ment variable and defaults to build.

• repos: dict [optional] Contains the definitions of all available repos and layers.

– <repo-id>: dict [optional] Contains the definition of a repository and the layers, that should be part of
the build. If the value is None, the repository, where the current configuration file is located is defined
as <repo-id> and added as a layer to the build.

* name: string [optional] Defines under which name the repository is stored. If its missing the
<repo-id> will be used.

* url: string [optional] The url of the repository. If this is missing, no version control operations are
performed.

* type: string [optional] The type of version control repository. The default value is git and hg is
also supported.

* refspec: string [optional] The refspec that should be used. If urlwas specified but no refspec
the revision you get depends on the defaults of the version control system used.

* path: string [optional] The path where the repository is stored. If the url and path is missing, the
repository where the current configuration file is located is defined. If the url is missing and the
path defined, this entry references the directory the path points to. If the url as well as the path
is defined, the path is used to overwrite the checkout directory, that defaults to kas_work_dir
+ repo.name. In case of a relative path name kas_work_dir is prepended.

* layers: dict [optional] Contains the layers from this repository that should be added to the
bblayers.conf. If this is missing or None or and empty dictionary, the path to the repo
itself is added as a layer.

· <layer-path>: enum [optional] Adds the layer with <layer-path> that is relative to the
repository root directory, to the bblayers.conf if the value of this entry is not in this
list: ['disabled', 'excluded', 'n', 'no', '0', 'false']. This way it is
possible to overwrite the inclusion of a layer in latter loaded configuration files.

* patches: dict [optional] Contains the patches that should be applied to this repo before it is used.

· <patches-id>: dict [optional] One entry in patches with its specific and unique id. All avail-
able patch entries are applied in the order of their sorted <patches-id>.

· repo: string [required] The identifier of the repo where the path of this entry is relative to.

· path: string [required] The path to one patch file or a quilt formatted patchset directory.

• bblayers_conf_header: dict [optional] This contains strings that should be added to the bblayers.
conf before any layers are included.

– <bblayers-conf-id>: string [optional] A string that is added to the bblayers.conf. The entry
id (<bblayers-conf-id>) should be unique if lines should be added and can be the same from
another included file, if this entry should be overwritten. The lines are added to bblayers.conf
in the same order as they are included from the different configuration files.

• local_conf_header: dict [optional] This contains strings that should be added to the local.conf.

– <local-conf-id>: string [optional] A string that is added to the local.conf. It operates in the
same way as the bblayers_conf_header entry.

• proxy_config: dict [optional] Defines the proxy configuration bitbake should use. Every entry can be
overwritten by the respective environment variables.

– http_proxy: string [optional]

– https_proxy: string [optional]

10 Chapter 2. User Guide

kas Documentation, Release 0.20.1

– no_proxy: string [optional]

2.4. Project Configuration 11

kas Documentation, Release 0.20.1

12 Chapter 2. User Guide

CHAPTER 3

Developer Guide

3.1 Deploy for development

This project uses pip to manage the package. If you want to work on the project yourself you can create the necessary
links via:

$ pip3 install --user -e .

That will install a backlink ~/.local/bin/kas to this project. Now you are able to call it from anywhere.

3.2 Docker image build

Just run:

$ docker build -t <image_name> .

When you need a proxy to access the internet, add:

--build-arg http_proxy=<http_proxy> --build-arg https_proxy=<https_proxy> --build-arg
→˓ftp_proxy=<ftp_proxy> --build-arg no_proxy=<no_proxy>

to the call.

3.3 Community Resources

Project home:

• https://github.com/siemens/kas

Source code:

13

https://github.com/siemens/kas

kas Documentation, Release 0.20.1

• https://github.com/siemens/kas.git

• git@github.com:siemens/kas.git

Documentation:

• https://kas.readthedocs.org

Mailing list:

• kas-devel@googlegroups.com

• Subscription:

– kas-devel+subscribe@googlegroups.com

– https://groups.google.com/forum/#!forum/kas-devel/join

• Archives

– https://groups.google.com/forum/#!forum/kas-devel

– https://www.mail-archive.com/kas-devel@googlegroups.com/

3.4 Class reference documentation

3.4.1 kas.kas Module

3.4.2 kas.libkas Module

This module contains the core implementation of kas.

class kas.libkas.LogOutput(live)
Handles the log output of executed applications

log_stderr(line)
This method is called when a line is received over stderr.

log_stdout(line)
This method is called when a line is received over stdout.

kas.libkas.find_program(paths, name)
Find a file within the paths array and returns its path.

kas.libkas.get_build_environ()
Creates the build environment variables.

kas.libkas.kasplugin(plugin_class)
A decorator that registers kas plugins

kas.libkas.repos_apply_patches(repos)
Applies the patches to the repositories.

kas.libkas.repos_fetch(repos)
Fetches the list of repositories to the kas_work_dir.

kas.libkas.run_cmd(cmd, cwd, env=None, fail=True, liveupdate=True)
Runs a command synchronously.

kas.libkas.run_cmd_async(cmd, cwd, env=None, fail=True, liveupdate=True)
Run a command asynchronously.

14 Chapter 3. Developer Guide

https://github.com/siemens/kas.git
mailto:git@github.com
https://kas.readthedocs.org
mailto:kas-devel@googlegroups.com
mailto:kas-devel+subscribe@googlegroups.com
https://groups.google.com/forum/#!forum/kas-devel/join
https://groups.google.com/forum/#!forum/kas-devel
https://www.mail-archive.com/kas-devel@googlegroups.com/

kas Documentation, Release 0.20.1

kas.libkas.ssh_add_key(env, key)
Adds an ssh key to the ssh-agent

kas.libkas.ssh_cleanup_agent()
Removes the identities and stops the ssh-agent instance

kas.libkas.ssh_no_host_key_check()
Disables ssh host key check

kas.libkas.ssh_setup_agent(envkeys=None)
Starts the ssh-agent

3.4.3 kas.libcmds Module

3.4.4 kas.build Module

3.4.5 kas.shell Module

3.4.6 kas.config Module

3.4.7 kas.repos Module

This module contains the Repo class.

class kas.repos.GitRepo(url, path, refspec, layers, patches, disable_operations)
Provides the git functionality for a Repo.

class kas.repos.MercurialRepo(url, path, refspec, layers, patches, disable_operations)
Provides the hg functionality for a Repo.

class kas.repos.Repo(url, path, refspec, layers, patches, disable_operations)
Represents a repository in the kas configuration.

static factory(name, repo_config, repo_fallback_path)
Returns a Repo instance depending on params.

static get_root_path(path, fallback=True)
Checks if path is under version control and returns its root path.

class kas.repos.RepoImpl(url, path, refspec, layers, patches, disable_operations)
Provides a generic implementation for a Repo.

apply_patches_async()
Applies patches to a repository asynchronously.

checkout()
Checks out the correct revision of the repo.

fetch_async()
Starts asynchronous repository fetch.

3.4.8 kas.includehandler Module

3.4. Class reference documentation 15

kas Documentation, Release 0.20.1

16 Chapter 3. Developer Guide

CHAPTER 4

Configuration Format Changes

4.1 Version 1 (Alias ‘0.10’)

4.1.1 Added

• Include mechanism

• Version check

4.2 Version 2

4.2.1 Changed

• Configuration file versions are now integers

4.2.2 Fixed

• Including files from repos that are not defined in the current file

4.3 Version 3

4.3.1 Added

• Task key that allows to specify which task to run (bitbake -c)

17

kas Documentation, Release 0.20.1

4.4 Version 4

4.4.1 Added

• Target key now allows to be a list of target names

4.5 Version 5

4.5.1 Changed behavior

• Using multiconfig:* targets adds appropriate BBMULTICONFIG entries to the local.conf automati-
cally.

4.6 Version 6

4.6.1 Added

• env key now allows to pass custom environment variables to the bitbake build process.

4.7 Version 7

4.7.1 Added

• type property to repos to be able to express which version control system to use.

4.8 Version 8

4.8.1 Added

• patches property to repos to be able to apply additional patches to the repo.

18 Chapter 4. Configuration Format Changes

CHAPTER 5

Indices and tables

• genindex

• modindex

• search

19

kas Documentation, Release 0.20.1

20 Chapter 5. Indices and tables

Python Module Index

k
kas.libkas, 14
kas.repos, 15

21

kas Documentation, Release 0.20.1

22 Python Module Index

Index

A
apply_patches_async() (kas.repos.RepoImpl

method), 15

C
checkout() (kas.repos.RepoImpl method), 15

F
factory() (kas.repos.Repo static method), 15
fetch_async() (kas.repos.RepoImpl method), 15
find_program() (in module kas.libkas), 14

G
get_build_environ() (in module kas.libkas), 14
get_root_path() (kas.repos.Repo static method), 15
GitRepo (class in kas.repos), 15

K
kas.libkas (module), 14
kas.repos (module), 15
kasplugin() (in module kas.libkas), 14

L
log_stderr() (kas.libkas.LogOutput method), 14
log_stdout() (kas.libkas.LogOutput method), 14
LogOutput (class in kas.libkas), 14

M
MercurialRepo (class in kas.repos), 15

R
Repo (class in kas.repos), 15
RepoImpl (class in kas.repos), 15
repos_apply_patches() (in module kas.libkas), 14
repos_fetch() (in module kas.libkas), 14
run_cmd() (in module kas.libkas), 14
run_cmd_async() (in module kas.libkas), 14

S
ssh_add_key() (in module kas.libkas), 14
ssh_cleanup_agent() (in module kas.libkas), 15
ssh_no_host_key_check() (in module kas.libkas),

15
ssh_setup_agent() (in module kas.libkas), 15

23

	Introduction and installation
	User Guide
	Dependencies & installation
	Usage
	Use Cases
	Project Configuration

	Developer Guide
	Deploy for development
	Docker image build
	Community Resources
	Class reference documentation

	Configuration Format Changes
	Version 1 (Alias ‘0.10’)
	Version 2
	Version 3
	Version 4
	Version 5
	Version 6
	Version 7
	Version 8

	Indices and tables
	Python Module Index

